Dynamic Trees

- · Goal: maintain a forest of rooted trees with costs on vertices.
 - Each tree has a root, every edge directed towards the root.
- Operations allowed:
 - link(v,w): creates an edge between v (a root) and w.
 - $\operatorname{cut}(v,w)$: deletes edge (v,w).
 - findcost(v): returns the cost of vertex v.
 - findroot(v): returns the root of the tree containing v.
 - findmin(v): returns the vertex w of minimum cost in the path from v to the root (if there is a tie, choose the closest to the root).
 - addcost(v,x): adds x to the cost of all vertices from v to root.

Dvnamic Trees

Dynamic Trees • findmin(s) = b • findroot(s) = a • findcost(s) = 2 • findcost(s) =

Obvious Implementation

• A node represents each vertex;

• Each node x points to its parent p(x):

• cut, split, findcost: constant time.

• findroot, findmin, addcost: linear time on the size of the path.

• Acceptable if paths are small, but O(n) in the worst case.

• Cleverer data structures achieve O(log n) for all operations.

Simple Paths

- · We start with a simpler problem:
 - Maintain set of paths that can be:
 - · split: cuts a path in two;
 - · concatenate: links endpoints of two paths, creating a new path.
 - Operations allowed:
 - findcost(v): returns the cost of vertex v;
 - addcost(v,x): adds x to the cost of vertices in path containing v;
 - find min(v): returns minimum-cost vertex path containing v.

Dynamic Trees

Simple Paths as Lists

- · Natural representation: doubly linked list.
 - Constant time for findcost.
 - Constant time for concatenate and split if endpoints given, linear time otherwise.
 - · Linear time for findmin and addcost.
- Can we do it $O(\log n)$ time?

Simple Paths as Binary Trees

- · Alternative representation: balanced binary trees.
 - Leaves: vertices in symmetric order.
 - Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

- · Compact alternative:
 - Each internal node represents both a vertex and a subpath:
 - subpath from leftmost to rightmost descendant.

Simple Paths: Maintaining Costs

- · Keeping costs:
 - First idea: store cost(x) directly on each vertex;
 - Problem: addcost takes linear time (must update all vertices).

Simple Paths: Maintaining Costs

- Better approach: store $\triangle cost(x)$ instead:
 - Root: $\triangle cost(x) = cost(x)$
 - Other nodes: $\triangle cost(x) = cost(x) cost(p(x))$

Simple Paths: Structural Changes

- Concatenating and splitting paths:
 - Join or split the corresponding binary trees;
 - Time proportional to tree height.
 - For balanced trees, this is $O(\log n)$.
 - Rotations must be supported in constant time.
 - We must be able to update Δ min and Δ cost.

Dynamic Trees

Simple Paths: Structural Changes

• Restructuring primitive: rotation.

- Fields are updated as follows (for left and right rotations):
 - $\Delta cost'(v) = \Delta cost(v) + \Delta cost(w)$
 - $\triangle cost'(w) = -\triangle cost(v)$
 - $\Delta cost'(b) = \Delta cost(v) + \Delta cost(b)$
 - $\Delta min'(w) = \max\{0, \Delta min(b) \Delta cost'(b), \Delta min(c) \Delta cost(c)\}$
 - $\Delta min'(v) = \max\{0, \Delta min(a) \Delta cost(a), \Delta min'(w) \Delta cost'(w)\}$

Dynamic Tree

Splaying

- · Simpler alternative to balanced binary trees: splaying.
 - Does not guarantee that trees are balanced in the worst case.
 - Guarantee $O(\log n)$ access in the amortized sense.
 - \bullet Makes the data structure much simpler to implement.
- · Basic characteristics:
 - Does not require any balancing information;
 - On an access to v:
 - Moves v to the root;
 - · Roughly halves the depth of other nodes in the access path.
 - Based entirely on rotations.
- Other operations (insert, delete, join, split) use splay.

Dynamic Trees

Amortized Analysis

- · Bounds the running time of a sequence of operations.
- Potential function Φ maps each configuration to real number.
- · Amortized time to execute each operation:
 - $\bullet \ a_i = t_i + \Phi_i \Phi_{i-1}$
 - a_i: amortized time to execute i-th operation;
 - t_i : actual time to execute the operation;
 - Φ_i: potential after the i-th operation.
- Total time for m operations:

$$\sum_{i=1..m} t_i = \sum_{i=1..m} (a_i + \Phi_{i-1} - \Phi_i) = \Phi_0 - \Phi_m + \sum_{i=1..m} a_i$$

Amortized Analysis of Splaying

- · Definitions:
 - s(x): size of node x (number of descendants, including x);
 - · At most n, by definition.
 - r(x): rank of node x, defined as log s(x);
 - At most $\log n$, by definition.
 - Φ_i potential of the data structure (twice the sum of all ranks).
 - · At most n log n, by definition.
- Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

$$6(r(t)-r(x)) + 1 = O(\log(s(t)/s(x))).$$

Proof of Access Lemma

Access Lemma [ST85]: The amortized time to splay a tree with root t at a node x is at most

$$6(r(t)-r(x)) + 1 = O(\log(s(t)/s(x))).$$

- · Proof idea:
 - $r_i(x) = \text{rank of } x \text{ after the } i\text{-th splay step};$
 - a_i = amortized cost of the i-th splay step;
 - $a_i \le 6(r_i(x) r_{i-1}(x)) + 1$ (for the zig step, if any)
 - $a_i \le 6(r_i(x) r_{i-1}(x))$ (for any zig-zig and zig-zag steps)
 - Total amortized time for all k steps:

$$\begin{split} & \sum_{i=1..k} a_i \leq \sum_{i=1..k-1} \left[6(r_i(x) - r_{i-1}(x)) \right] + \left[6(r_i(x) - r_{i-1}(x)) + 1 \right] \\ & = 6r_k(x) - 6r_o(x) + 1 \end{split}$$

ynamic Trees

Proof of Access Lemma: Splaying Step

Zig-zig:

Claim: $a \le 6 (r'(x) - r(x))$ $t+\Phi'-\Phi\leq 6\left(r'(x)-r(x)\right)$

 $2 + 2(r'(x) + r'(y) + r'(z)) - 2(r(x) + r(y) + r(z)) \le 6(r'(x) - r(x))$

 $1 + r'(x) + r'(y) + r'(z) - r(x) - r(y) - r(z) \le 3 \left(r'(x) - r(x) \right)$

 $1 + r'(y) + r'(z) - r(x) - r(y) \le 3 (r'(x) - r(x))$ since r'(x) = r(z)

 $1 + r'(y) + r'(z) - 2r(x) \le 3 \; (r'(x) - r(x))$

since $r(y) \ge r(x)$ $1 + r'(x) + r'(z) - 2r(x) \le 3 (r'(x) - r(x))$ since $r'(x) \ge r'(y)$

 $(r(x) - r'(x)) + (r'(z) - r'(x)) \le -1$ $\log(s(x)/s'(x)) + \log(s'(z)/s'(x)) \le -1$

rearranging definition of rank

TRUE because s(x)+s'(z) < s'(x): both ratios are smaller than 1, at least one is at most -1/2.

Dynamic Trees

Proof of Access Lemma: Splaying Step

Zig-zag:

Claim: $a \le 4 (r'(x) - r(x))$

 $t + \Phi' - \Phi \le 4 (r'(x) - r(x))$

 $2 + (2r'(x) + 2r'(y) + 2r'(z)) - (2r(x) + 2r(y) + 2r(z)) \le 4(r'(x) - r(x))$

 $2 + 2r'(y) + 2r'(z) - 2r(x) - 2r(y) \le 4(r'(x) - r(x)), \text{ since } r'(x) = r(z)$

 $2 + 2r'(y) + 2r'(z) - 4r(x) \le 4 (r'(x) - r(x)),$ since $r(y) \ge r(x)$

 $(r'(y) - r'(x)) + (r'(z) - r'(x)) \le -1,$ rearranging

 $\log(s'(y)/s'(x)) + \log(s'(z)/s'(x)) \le -1$ definition of rank

TRUE because s'(y) + s'(z) < s'(x): both ratios are smaller than 1, at least one is at most -1/2.

Dynamic Trees

Proof of Access Lemma: Splaying Step

· Zig:

Claim: $a \le 1 + 6 (r'(x) - r(x))$

 $t + \Phi' - \Phi \le 1 + 6(r'(x) - r(x))$

 $1 + (2r'(x) + 2r'(y)) - (2r(x) + 2r(y)) \le 1 + 6(r'(x) - r(x))$

 $1+2(r'(x)-r(x)) \le 1+6(r'(x)-r(x)),$

 $\sin \operatorname{ce} r(y) \ge r'(y)$

TRUE because $r'(x) \ge r(x)$.

Dynamic Trees

Splaying

- · To sum up:
 - No rotation: a = 1
 - Zig: $a \le 6 (r'(x) r(x)) + 1$
 - Zig-zig: $a \le 6 (r'(x) r(x))$
 - **Zig-zag:** $a \le 4 (r'(x) r(x))$
 - Total amortized time at most $6(r(t) r(x)) + 1 = O(\log n)$
- Since accesses bring the relevant element to the root, other operations (insert, delete, join, split) become trivial.

Dvnamic Tree

Dynamic Trees

- · We know how to deal with isolated paths.
- How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

 Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

• Main idea: partition the vertices in a tree into disjoint solid paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

- A vertex v is exposed if:
 - There is a solid path from v to the root;
 - No solid edge enters v.

Dynamic Trees

Dynamic Trees

- A vertex v is exposed if:
 - There is a solid path from v to the root;
 - No solid edge enters v.
- It is unique.

Dynamic Tree

Dynamic Trees

- · Solid paths:
 - · Represented as binary trees (as seen before).
 - Parent pointer of root is the outgoing dashed edge.
 - Hierarchy of solid binary trees linked by dashed edges: "virtual tree".
- "Isolated path" operations handle the exposed path.
 - The solid path entering the root.
 - Dashed pointers go up, so the solid path does not "know" it has dashed children.
- If a different path is needed:
 - expose(v): make entire path from v to the root solid.

Dvnamic Trees

Dynamic Trees

• Example: expose(v)

Dynamic Trees

• Example: expose(v)

• Take all edges in the path to the root, ...

Dynamic Trees

Dynamic Trees

- Example: expose(v)
 - ..., make them solid, ...

Dynamic Trees

Dynamic Trees

- Example: expose(v)
 - $\bullet \ \dots make$ sure there is no other solid edge incident into the path.
 - Uses splice operation.

8

Dynamic Tre

Exposing a Vertex

- expose(x): makes the path from x to the root solid.
- Implemented in three steps:
 - 1. Splay within each solid tree in the path from x to root.
 - 2. Splice each dashed edge from x to the root.
 - splice makes a dashed become the left solid child;
 - $-\$ If there is an original left solid child, it becomes dashed.
 - 3. Splay on x, which will become the root.

Dynamic Trees: Splice

· Additional restructuring primitive: splice.

- Will only occur when w is the root of a tree.
- Updates:
 - $\Delta cost'(v) = \Delta cost(v) \Delta cost(z)$
 - $\Delta cost'(u) = \Delta cost(u) + \Delta cost(z)$
 - $\Delta min'(z) = \max\{0, \Delta min(v) \Delta cost'(v), \Delta min(x) \Delta cost(x)\}$

Dynamic Trees

Exposing a Vertex: Running Time

- Running time of expose(x):
 - proportional to initial depth of x;
 - x is rotated all the way to the root;
 - we just need to count the number of rotations;
 - will actually find amortized number of rotations: $O(\log n)$.
 - proof uses the Access Lemma.
 - s(x), r(x) and potential are defined as before;
 - In particular, s(x) is the size of the whole subtree rooted at x.
 - Includes both solid and dashed edges.

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

- k: number of dashed edges from x to the root t.
- Amortized costs of each pass:
 - 1. Splay within each solid tree:
 - x_i : vertex splayed on the i-th solid tree.

 - amortized cost of *i*-th splay: $6(r'(x_i) r(x_i)) + 1$. $r(x_{i+1}) \ge r'(x_i)$, so the sum over all steps telescopes; Amortized cost first of pass: $6(r'(x_k)-r(x_1)) + k \le 6 \log n + k$.
 - 2. Splice dashed edges:
 - no rotations, no potential changes: amortized cost is zero.
 - - amortized cost is at most $6 \log n + 1$.
 - x ends up in root, so exactly k rotations happen;
 - each rotation costs one credit, but is charged two;
 they pay for the extra k rotations in the first pass.
- Amortized number of rotations = $O(\log n)$.

Dynamic Trees

Implementing Dynamic Tree Operations

- findcost(v):
 - expose v, return cost(v).
- findroot(v):

 - find w, the rightmost vertex in the solid subtree containing v;
- splay at w and return w.
- findmin(v):
 - expose υ;
 - use $\triangle cost$ and $\triangle min$ to walk down from v to w, the last minimumcost node in the solid subtree;
 - splay at w and return w.

Dynamic Trees

Implementing Dynamic Tree Operations

- addcost(v, x):
 - expose υ;
 - add x to $\triangle cost(v)$;
- link(v,w):
 - lacksquare expose v and w (they are in different trees);
 - set p(v)=w (that is, make v a middle child of w).
- cut(v):
 - expose v;
- add $\triangle cost(v)$ to $\triangle cost(right(v))$;
- make $p(right(v)) = \mathbf{null}$ and $right(v) = \mathbf{null}$.

)vnamic Tree

Extensions and Variants

- · Simple extensions:
 - · Associate values with edges:
 - just interpret cost(v) as cost(v,p(v)).
 - other path queries (such as length):
 - $\bullet\,$ change values stored in each node and update operations.
 - free (unrooted) trees.
 - · implement evert operation, which changes the root.
- · Not-so-simple extension:
 - subtree-related operations:
 - · requires that vertices have bounded degree;
 - Approach for arbitrary trees: "ternarize" them:
 - [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees

Alternative Implementation

- Total time per operation depends on the data structure used to represent paths:
 - Splay trees: O(log n) amortized [ST85].
 - Balanced search tree: O(log2n) amortized [ST83].
 - Locally biased search tree: O(log n) amortized [ST83].
 - Globally biased search trees: O(log n) worst-case [ST83].
- Biased search trees:
 - Support leaves with different "weights".
 - Some solid leaves are "heavier" because they also represent subtrees dangling from it from dashed edges.
 - Much more complicated than splay trees.

Dynamic Trees

Other Data Structures

- Some applications require tree-related information:
 - minimum vertex in a tree;
 - add value to all elements in the tree;
 - link and cut as usual.
- · ET-Trees can do that:
 - Henzinger and King (1995);
 - Tarjan (1997).

Dynamic Trees

ET-Trees

- · Each tree represented by its Euler tour.
 - Edge {*v*,*w*}:
 - appears as arcs (v,w) and (w,v)
 - Vertex v:
 - appears once as a self-loop (v,v):
 - used as an "anchor" for new links.
 - $\bullet \ \ stores \ vertex-related \ in formation.$
 - Representation is not circular: tour broken at arbitrary place.

ET-Trees

- Consider link(v,w):
 - Create elements representing arcs (v,w) and (w,v):

(v,w) (w,v)

- Split and concatenate tours appropriately:
 - Original tours:

• Final tour:

The cut operation is similar.

Dynamic Trees

ET-Trees

- · Tours as doubly-linked lists:
 - · Natural representation.
 - link/cut: O(1) time.
 - addcost/findmin: O(n) time.
- · Tours as balanced binary search trees:
 - link/cut: O(log n) time (binary tree join and split).
 - addcost/findmin: O(log n) time:
 - values stored in difference form.

Dynamic Trees

Contractions

- ST-Trees [ST83, ST85]:
 - first data structure to handle paths within trees efficiently.
 - It is clearly path-oriented:
 - · relevant paths explicitly exposed and dealt with.
- · Other approaches are based on contractions:
 - Original tree is progressively contracted until a structure representing only the relevant path (or tree) is left.

Dynamic Trees

Contractions

• Assume we are interested in the path from a to b:

Using only local information, how can we get closer to the solution?

Dynamic Trees

Contractions

· Consider any vertex v with degree 2 in the tree

- Possibilities if v is neither a nor b:
 - a and b on same "side": v is not in a-b.
 - If a and b on different sides: v belongs to path a-b.

Dynamic Trees

Contractions

• Consider any vertex v with degree 2 in the tree

- Possibilities if *v* is neither *a* nor *b*:
 - a and b on same "side": v is not in a-b.
 - If a and b on different sides: v belongs to path a b.
- We can replace (u,v) and (v,w) with a new edge (u,w):
 - This is a compress operation.

Dynamic Trees

Contractions

• Consider any vertex v with degree 1 in the tree:

• If v is neither a nor b, it is clearly not in a—b.

Dynamic Trees

Contractions

• Consider any vertex v with degree 1 in the tree:

- If v is neither a nor b, it is clearly not in a-b.
- We can simply eliminate (v, w), reducing the problem size.
 - · This is a rake operation.

Contractions

- · A contraction-based algorithm:
 - Work in rounds;
 - In each round, perform some rakes and/or compresses:
 - this will create a new, smaller tree;
 - moves within a round are usually "independent".
 - Eventually, we will be down to a single element (vertex/edge) that represents a path (or the tree).

Path Queries

• Computing the minimum cost from a to b:

Path Queries

• Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

• Computing the minimum cost from a to b:

Path Queries

• Computing the minimum cost from a to b:

Path Queries Computing the minimum cost from a to b:

Contractions
 Suppose a definition of independence guarantees that a fraction 1/k of all possible rakes and compresses will be executed in a round.
 All degree-1 vertices are rake candidates.
 All degree-2 vertices are compress candidates.
 Fact: at least half the vertices in any tree have degree 1 or 2.
 Result: a fraction 1/2k of all vertices will be removed.
 Total number of rounds is \[log_{(2k)/(2k-1)}n \] = O(\log n).

Contractions

- · rake and compress proposed by Miller and Reif [1985].
 - · Original context: parallel algorithms.
 - Perform several operations on trees in O(log n) time.

vnamic Trees

The Update Problem

- Coming up with a definition of independence that results in a contraction with O(log n) levels.
 - But that is not the problem we need to solve.
- Essentially, we want to repair an existing contraction after a tree operation (link/cut).
- So we are interested in the update problem:
 - Given a contraction C of a forest F, find another contraction C' of a forest F' that differs from F in one single edge (inserted or deleted)
 - Fast: O(log n) time.

Dynamic Trees

Our Problem

- Several data structures deal with this problem.
 - [Frederickson, 85 and 97]: Topology Trees;
 - [Alstrup et al., 97 and 03]: Top Trees;
 - [Acar et al. 03]: RC-Trees.

Dynamic Trees

Top Trees

- Proposed by Alstrup et al. [1997,2003]
- · Handle unrooted (free) trees with arbitrary degrees.
- Kev ideas:
 - Associate information with the edges directly.
 - Pair edges up:
 - compress: combines two edges linked by a degree-two vertex;
 - rake: combines leaf with an edge with which it shares an endpoint.
 - All pairs (clusters) must be are disjoint.
 - expose: determines which two vertices are relevant to the query (they will not be raked or compressed).

Dynamic Trees

Top Trees

· Consider some free tree.

(level zero: original tree)

Dynamic Trees

Top Trees

 All degree-1 and degree-2 vertices are candidates for a move (rake or compress).

(level zero: original tree)

Dynamic Trees

Top Trees

When two edges are matched, they create new clusters, which are edge-disjoint.

(level zero: original tree)

Top Trees

- · Clusters are new edges in the level above:
 - New rakes and compresses can be performed as before.

(level one)

Top Trees

- The top tree itself represents the hierarchy of clusters:
 - original edge: leaf of the top tree (level zero).
 - two edges/clusters are grouped by rake or compress:
 - · Resulting cluster is their parent in the level above.
 - edge/cluster unmatched: parent will have only one child.
- · What about values?

Dynamic Trees

Top Trees

- · Alstrup et al. see top tree as an API.
- The top tree engine handles structural operations:
 - · User has limited access to it.
- Engine calls user-defined functions to handle values properly:
 - join(A,B,C): called when A and B are paired (by rake or compress) to create cluster C.
 - $\operatorname{split}(A,B,C)$: called when a rake or compress is undone (and C is split into A and B).
 - create(C, e): called when base cluster C is created to represent edge e.
 - destroy(C): called when base cluster C is deleted.

Dynamic Trees

Top Trees

- · Example (path operations: findmin/addcost)
 - Associate two values with each cluster:
 - mincost(C): minimum cost in the path represented by C.
 - extra(C): cost that must be added to all subpaths of C.
 - create(C, e): (called when base cluster C is created)
 - $\min \operatorname{cost}(C) = \operatorname{cost} \operatorname{of} \operatorname{edge} e$.
 - extra(C) = 0
 - destroy(C): (called when base cluster C is deleted).
 - Do nothing.

Dynamic Trees

Top Trees

- Example (path operations: findmin/addvalue)
 - join(A,B,C): (called when A and B are combined into C)
 - compress: mincost(C) = min{mincost(A), mincost(B)}
 - rake: mincost(C) = mincost(B) (assume A is the leaf)
 - Both cases: extra(C) = 0
 - split(A,B,C): (called when C is split into A and B)
 - compress: for each child $X \in \{A,B\}$:
 - $\min cost(X) = \min cost(X) + extra(C)$ extra(X) = extra(X) + extra(C)
 - rake: same as above, but only for the edge/cluster that was not

Dynamic Trees

Top Trees

- Example (path operations: findmin/addvalue)
 - To find the minimum cost in path a-b:
 - $R = \exp(a, b)$;
 - return mincost(R).
 - To add a cost x to all edges in path a-b:
 - $R = \exp(a, b)$;
 - $\min \operatorname{cost}(R) = \min \operatorname{cost}(R) + x;$
 - extra(R) = extra(R) + x.

Dynamic Tree

Top Trees

- · Can handle operations such as:
 - tree costs (just a different way of handling rakes);
 - path lengths;
 - tree diameters.
- Can handle non-local information using the select operation:
 - allows user to perform binary search on top tree.
 - an example: tree center.
- Top trees are implemented on top of topology trees, which they generalize.

Dynamic Tree

Topology Trees

- Proposed by Frederickson [1985, 1997].
- · Work on rooted trees of bounded degree.
 - Assume each vertex has at most two children.
 - · Values (and clusters) are associated with vertices.
 - Perform a maximal set of independent moves in each round.
 - Handle updates in O(log n) worst-case time.

Dynamic Trees

RC-Trees

- Proposed by Acar et al. [2003].
- · Can be seen as a variant of topology trees.
 - Information stored on vertices.
 - Trees of bounded degree.
- · Main differences:
 - Not necessarily rooted.
 - Alternate rake and compress rounds.
 - Not maximal in compress rounds (randomization).
 - Updates in O(log n) expected time.

Dynamic Trees

Contractions

- Topology, Top, and Trace trees:
 - contraction-based.
- ST-Trees: path-based.
 - But there is a (rough) mapping:
 - dashed \leftrightarrow rake
 - "this is a path that goes nowhere"
 - $\bullet \ \, solid \leftrightarrow compress$
 - "both part of a single path"
 - ST-Trees can be used to implement topology trees [AHdLT03].

Dynamic Trees

Chronology

- ST-Trees
 - Sleator and Tarjan (1983): with balanced and biased search trees;
 - Sleator and Tarjan (1985): splay trees.
- Topology Trees:
 - Frederickson (1985, 1987).
- ET-trees:
 - Hensinger and King (1995);
- Tarjan (1997).
- Top Trees:
 - Alstrup, de Lichtenberg, and Thorup (1997);
- Alstrup, Holm, de Lichtenberg, and Thorup (2003).
- RC-Trees:
 - Acar, Blelloch, Harper, and Woo (2003).

Dynamic Tree