Renato Werneck

Dynamic Trees Dynamic Trees

» Goal: maintain a forest of rooted trees with costs on vertices. « An example (two trees):
= Each tree has a root, every edge directed towards the root.

+ Operations allowed: / H\

= link(v,w): creates an edge between v (a root) and w.

g 3 1% i%
= cut(v,w): deletes edge (v,w). Lo ,f
= findcost(v): returns the cost of vertex v. . EAS
1
= findroot(v): returns the root of the tree containing v. . ({},
= findmin(v): returns the vertex w of minimum cost in the path
from v to the root (if there is a tie, choose the closest to the root).
= addcost(v,x): adds x to the cost of all vertices from v to root.
Dynamic Trees Dynamic Trees
Dynamic Trees Dynamic Trees
et .]"ga h;\;% Y link(q,e) /i.g. 4 cut(q)
kln 14, 8.\& EEEE—— Iy s 6 —
04 pb o4 pb
do 1 40 1
te u4 \)
Dynamic Trees Dynamic Trees
Dynamic Trees Obvious Implementation

e Anode represents each vertex;
= findmin(s) = b
= findroot(s) = a
= findcost(s) = 2

« Each node x points to its parent p(x):
= cut, split, findcost: constant time.

= findroot, findmin, addcost: linear time on the size of the path.

« Acceptable if paths are small, but O(n) in the worst case.

« Cleverer data structures achieve O(log n) for all operations.

= addcost(s,3)

Dynamic Trees Dynamic Trees

Dynamic Trees

Renato Werneck

Simple Paths

« We start with a simpler problem:
= Maintain set of paths that can be:
« split: cuts a path in two;
- concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;
« addcost(v,x): adds x to the cost of vertices in path containing v;
« findmin(v): returns minimum-cost vertex path containing v.

v, v, v, v, vy vg

(]

Simple Paths as Lists

Dynamic Trees

« Natural representation: doubly linked list.
= Constant time for findcost.

= Constant time for concatenate and split if endpoints given, linear
time otherwise.

= Linear time for findmin and addcost.

« Can we do it O(log n) time?

costs: 6 2 3 4 7 9 3
©
v, v, v, v, vy vg v,
Dynamic Trees

Simple Paths as Binary Trees

« Alternative representation: balanced binary trees.
= Leaves: vertices in symmetric order.

= Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

« Compact alternative:
= Each internal node represents both a vertex and a subpath:
« subpath from leftmost to rightmost descendant.

©
vl

Dynamic Trees

Simple Paths: Maintaining Costs

« Keeping costs:
= First idea: store cost(x) directly on each vertex;

= Problem: addcost takes linear time (must update all vertices).

Simple Paths: Maintaining Costs

« Better approach: store Acost(x) instead:
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))

actual costs n Vg difference form n Vg

Dynamic Trees

Dynamic Trees

Renato Werneck

Simple Paths: Maintaining Costs

Simple Paths: Finding Minima

¢ Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).

difference form n Vg

« Still have to implement findmin:
= Storing mincost(x), the minimum cost in subpath with root x.
« findmin runs in O(log n) time, but addcost is linear.

actual costs n Vg

Dynamic Trees

Dynamic Trees

Simple Paths: Finding Minima

Simple Paths: Data Fields

« Store Amin(x) = cost(x)-mincost(x) instead.

= findmin still runs in O(log n) time, addcost now constant.

« Final version:

= Stores Amin(x) and Acost(x) for every vertex

actual costs n Vg

Dynamic Trees

Simple Paths: Structural Changes

Simple Paths: Structural Changes

» Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.
= For balanced trees, this is O(log n).
« Rotations must be supported in constant time.
» We must be able to update Amin and Acost.

¢ Restructuring primitive: rotation.

() O]
rotate(v)

QO — 0
@ © ® ©

« Fields are updated as follows (for left and right rotations):
= Acost'(v) = Acost(v) + Acost(w)
= Acost'(w) = —Acost(v)
= Acost’(b) = Acost(v) + Acost(b)
= Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}

= Amin’(v) = max{0, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}

Dynamic Trees

Dynamic Trees

Dynamic Trees

Renato Werneck

Splaying

Splaying

« Simpler alternative to balanced binary trees: splaying.

= Guarantee O(log n) access in the amortized sense.

= Makes the data structure much simpler to implement.
 Basic characteristics:

= Does not require any balancing information;

= On an access to v:
« Moves v to the root;

= Based entirely on rotations.

« Other operations (insert, delete, join, split) use splay.

= Does not guarantee that trees are balanced in the worst case.

« Roughly halves the depth of other nodes in the access path.

« Three restructuring operations:

@ @
QA e B 2
£ " AAAA
A A 0 @
A A
A
0 Zigka) 2
DA A @0
A A A A

zigzig(x)
@B YA @
(only happens if y is root)

[\ A A

Dynamic Trees

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

An Example of Splaying

Dynamic Trees

Dynamic Trees

orige)
Dymamic Trees
An Example of Splaying

Dynamic Trees

Renato Werneck

An Example of Splaying

An Example of Splaying

Dynamic Trees

zigzag(a)
—_—

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

zig(a)

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

« End result:

splay(a)
—_—

Dynamic Trees

Dynamic Trees

Renato Werneck

Amortized Analysis Amortized Analysis of Splaying
« Bounds the running time of a sequence of operations. « Definitions:
« Potential function ® maps each configuration to real number. * s(x): size of node x (number of descendants, including x);

. . . « At most n, by definition.
» Amortized time to execute each operation:

==L+ P, -0,
- a; amortized time to execute i-th operation;

= r(x): rank of node x, defined as log s(x);
« At most log n, by definition.

= ®; potential of the data structure (twice the sum of all ranks).

« t; actual time to execute the operation; + At most n log n, by definition.

- ®; potential after the i-th operation.
« Access Lemma [ST85]: The amortized time to splay a tree

+ Total time for m operations: with root t at a node x is at most

Ziimti= i (@ O = B) =~ O, + F 6(r(t)-r(x)) + 1 = O(og(s(t)/s(x))).
Dynamic Trees Dynamic Trees
Proof of Access Lemma Proof of Access Lemma: Splaying Step
 Access Lemma [ST85]: The amortized time to splay a tree - Zig-zig: (=) (=)
with root t at a node x is at most O ANBO)
6 ol A 2igzig(x) A D
L)— = t . —
(r(t)-(x)) + 1 = O(log(s(t)/s(x))) Claim: a £ 6 (09 — () AN O
» Proofidea: t+ - ®<6(r(x)-r(x)
= r{(x) = rank of x after the i-th splay step; 2 +2(r()+’ Y)+1'(2)) — 2(r(x)+r@)+r(2)) < 6 (F(x) - r(x))
= @;= amortized cost of the i-th splay step; 1+rG) + @) + r'(2) - r) - @) - r(z) <3 (r’Fx) -rC))
= a;< 6(rx)-r,_,(x) + 1 (for the zig step, if any) 1470) + 1) - 1) -) 3 (k) - r(x) Sl,nm re) =)
L. i 1+7(y) +1r(z) - 2r(x) < 3 (F(x) - r(x)) since r(y) 2 r(x)
= ;< 6(rx)-r;_,(x)) (for any zig-zig and zig-zag steps) 14700 + Pz) — 2r() £ 3 (F(0) = 1(9) since r(9) 2 ' (y)
= Total amortized time for all k steps: () — () + (@) - ")) < — 1 rearranging
zi=1..k a< zi=1..k—1 [6(r,G)—ro_,CN] + [6(r(0)-T;_, () + 1] log(s(x)/s(x)) + log(s'(z)/s(x))<—1 definition of rank
TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one
= 6r(x) — 671,(x) + 1 is at most —1/2.
Dynamic Trees Dynamic Trees
Proof of Access Lemma: Splaying Step Proof of Access Lemma: Splaying Step
o Zig-zag: (2 (2 o Zig: () 2ige) (=
O NI I O RO (LA — A)
A X ANV AN AN
Claim: a < 4 (r'(x) — r(x)) A A Claim: a <1+ 6 (F(x) — r(9) (only happens if y is root)
t+ O — D <4 (P - () t+ - D <1+ 6 (F(x) - r(x)
2 + (2r'(x)+2r'(y)+2r'(z)) — (2r(x)+2r(y)+2r(z)) < 4 (r'(x) — r(x)) 1+ (2r°(x)+2r'(y)) - (2rx)+2r@y)) <1+ 6 (F(x) — r(x))
2 +2r'(y) + 2r'(z) — 2r(x) — 2r(y) < 4 (¥(x) — r(x)), since r'(x) =r(z) 1+2(0) - r(x) <1+ 6 (F(x) - r(x), since r(y) = r'y)
2 +2r'(y) + 2r'(z) — 4r(x) < 4 (F(x) - r(x)), since r(y) = r(x) TRUE because (x) = r(x).
@) -re) + (@@ -rE)<-1, rearranging
log(s’()/s’(x)) + log(s’(2)/s’(x)) < —1 definition of rank
TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most —1/2.
Dynamic Trees Dynamic Trees

Dynamic Trees

Renato Werneck

Splaying

¢ Tosum up:
= No rotation: a =1
= Zigira<6(P(x)-r(x) +1
= Zig-7ig: a <6 ((x) — r(x))
= Zig-zag:a<4 (F(x) - rx))
= Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n)

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

« We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

» Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

e Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

« Avertex vis exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

Dynamic Trees

Dynamic Trees

« Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

« Itisunique.

Dynamic Trees

Dynamic Trees

Renato Werneck

Dynamic Trees

« Solid paths:
= Represented as binary trees (as seen before).
= Parent pointer of root is the outgoing dashed edge.
= Hierarchy of solid binary trees linked by dashed edges: “virtual
tree”.
« “Isolated path” operations handle the exposed path.
= The solid path entering the root.
= Dashed pointers go up, so the solid path does not “know” it has
dashed children.
« Ifa different path is needed:

= expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

Dynamic Trees

Dynamic Trees

« Example: expose(v)

f
! b
. ¢
9@ ¢ Vi a
P o k
j ° O h
m, n e
4
r t g
v s
wd u
actual tree virtual tree
Dynamic Trees
Dynamic Trees

Dynamic Trees

« Example: expose(v)
= Take all edges in the path to the root, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)

= .., make them solid, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)
= ...make sure there is no other solid edge incident into the path.
« Uses splice operation.

Dynamic Trees

Dynamic Trees

Renato Werneck

Exposing a Vertex

« expose(x): makes the path from x to the root solid.
» Implemented in three steps:
1. Splay within each solid tree in the path from x to root.
2. Splice each dashed edge from x to the root.
— splice makes a dashed become the left solid child;
— If there is an original left solid child, it becomes dashed.
3. Splay on x, which will become the root.

Dynamic Trees

Dynamic Trees: Splice

 Additional restructuring primitive: splice.

splice(v)

= Will only occur when w is the root of a tree.
« Updates:
= Acost’(v) = Acost(v) — Acost(z)
= Acost’(u) = Acost(u) + Acost(z)
= Amin’(z) = max{o, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

Exposing a Vertex: An Example

« expose(a)

(virtual trees)

Dynamic Trees

Exposing a Vertex: Running Time

« Running time of expose(x):
= proportional to initial depth of x;
= xisrotated all the way to the root;
= we just need to count the number of rotations;
« will actually find amortized number of rotations: O(log n).
= proof uses the Access Lemma.
« s(x), r(x) and potential are defined as before;

« In particular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

= k: number of dashed edges from x to the root ¢.
= Amortized costs of each pass:

1. Splay within each solid tree:

— x;: vertex splayed on the i-th solid tree.

— amortized cost of i-th splay: 6 (r(x;) — r(x)) + 1.

- r(x,,) 2r(x;), so the sum over all steps telescopes;

- Amortized cost first of pass: 6(r'(x,)-(x,)) + k< 6logn + k.
2. Splice dashed edges:

— no rotations, no potential changes: amortized cost is zero.
3. Splay on x:

— amortized cost is at most 6 log n + 1.

— xends up in root, so exactly k rotations happen;

— each rotation costs one credit, but is charged two;

— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Implementing Dynamic Tree Operations

Dynamic Trees

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose v;
= find w, the rightmost vertex in the solid subtree containing v;
= splay at w and return w.
« findmin(v):
= expose v;

= use Acost and Amin to walk down from v to w, the last minimum-
cost node in the solid subtree;

= gsplay at w and return w.

Dynamic Trees

Dynamic Trees

Renato Werneck

Implementing Dynamic Tree Operations Extensions and Variants
« addcost(v, x): « Simple extensions:
= expose v; = Associate values with edges:
= add x to Acost(v); « just interpret cost(v) as cost(v,p(v)).

« link(v,w): = other path queries (such as length):
o « change values stored in each node and update operations.
= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).

= free (unrooted) trees.
+ implement evert operation, which changes the root.

* cut(v): « Not-so-simple extension:
" exposev; = subtree-related operations:
= add Acost(v) to Acost(right(v)); « requires that vertices have bounded degree;
= make p(right(v))=null and right(v)=null. « Approach for arbitrary trees: “ternarize” them:

— [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees Dynamic Trees

Alternative Implementation Other Data Structures

 Total time per operation depends on the data structure used to « Some applications require tree-related information:

represent paths: = minimum vertex in a tree;

= Splay trees: O(log n) amortized [ST85]. = add value to all elements in the tree;
= Balanced search tree: O(log2n) amortized [ST83]. = link and cut as usual.

= Locally biased search tree: O(log n) amortized [ST83].
= Globally biased search trees: O(log n) worst-case [ST83].

o ET-Trees can do that:
= Henzinger and King (1995);

« Biased search trees: = Tarjan (1997).

= Support leaves with different “weights”.

= Some solid leaves are “heavier” because they also represent
subtrees dangling from it from dashed edges.

= Much more complicated than splay trees.

Dynamic Trees Dynamic Trees
ET-Trees ET-Trees
« Each tree represented by its Euler tour. « Consider link(v,w):
= Edge {v,w}: e = Create elements representing arcs (v,w) and (w,v):
a

- appears as arcs (v,w) and (w,v) p

* Vertex v: c = Split and concatenate tours appropriately:
- appears once as a self-loop (v,v): « Original tours:

« used as an “anchor” for new links. n 2 n =

« stores vertex-related information.

= Representation is not circular: tour broken at arbitrary place.

« Final tour:

« The cut operation is similar.

Dynamic Trees Dynamic Trees

Dynamic Trees

Renato Werneck

ET-Trees

« Tours as doubly-linked lists:
= Natural representation.
= link/cut: O(1) time.
= addcost/findmin: O(n) time.
« Tours as balanced binary search trees:
= link/cut: O(log n) time (binary tree join and split).
= addcost/findmin: O(log n) time:
- values stored in difference form.

Dynamic Trees

Contractions

« Assume we are interested in the path from a to b:

solution?

= Using only local information, how can we get closer to the

Dynamic Trees

Contractions

o ST-Trees [ST83, ST85]:

= Itis clearly path-oriented:
« relevant paths explicitly exposed and dealt with.
« Other approaches are based on contractions:

= Original tree is progressively contracted until a structure
representing only the relevant path (or tree) is left.

= first data structure to handle paths within trees efficiently.

Dynamic Trees

Contractions

« Consider any vertex v with degree 2 in the tree

« Possibilities if v is neither a nor b:
= aand b on same “side”: v is not in a-b.

= If a and b on different sides: v belongs to path ab.

Dynamic Trees

Contractions

« Consider any vertex v with degree 2 in the tree

« Possibilities if v is neither a nor b:
= g and b on same “side”: v is not in ab.

= If a and b on different sides: v belongs to path a-b.

= This is a compress operation.

Contractions

« We can replace (u,v) and (v,w) with a new edge (u,w):

Dynamic Trees

« Consider any vertex v with degree 1in the tree:

= If v is neither a nor b, it is clearly not in a-b.

Dynamic Trees

Dynamic Trees

11

Renato Werneck

Contractions

Contractions

« Consider any vertex v with degree 1in the tree:

= If v is neither a nor b, it is clearly not in ab.

« This is a rake operation.

= We can simply eliminate (v,w), reducing the problem size.

Dynamic Trees

« A contraction-based algorithm:
= Work in rounds;
= In each round, perform some rakes and/or compresses:
« this will create a new, smaller tree;
« moves within a round are usually “independent”.

= Eventually, we will be down to a single element (vertex/edge)
that represents a path (or the tree).

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Path Queries

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

7
Dynamic Trees
Path Queries
» Computing the minimum cost from a to b:
7
Dynamic Trees

« Computing the minimum cost from a to b:

N

Dynamic Trees

Dynamic Trees

12

Renato Werneck

Path Queries

» Computing the minimum cost from a to b:

Path Queries

Dynamic Trees

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Path Queries

Dynamic Trees

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Contractions

Dynamic Trees

« Suppose a definition of independence guarantees that a
fraction 1/k of all possible rakes and compresses will be
executed in a round.

= All degree-1 vertices are rake candidates.

= All degree-2 vertices are compress candidates.

= Fact: at least half the vertices in any tree have degree 1 or 2.

» Result: a fraction 1/2k of all vertices will be removed.

= Total number of rounds is |—log(2k) /(2k_1)n-| = O(log n).

Dynamic Trees

Dynamic Trees

13

Renato Werneck

Contractions

« rake and compress proposed by Miller and Reif [1985].
= Original context: parallel algorithms.

= Perform several operations on trees in O(log n) time.

Dynamic Trees

Our Problem

« Several data structures deal with this problem.
= [Frederickson, 85 and 97]: Topology Trees;
= [Alstrup et al., 97 and 03]: Top Trees;
= [Acar et al. 03]: RC-Trees.

Dynamic Trees

Top Trees

The Update Problem

« Coming up with a definition of independence that results in a
contraction with O(log n) levels.

= But that is not the problem we need to solve.
« Essentially, we want to repair an existing contraction after a
tree operation (link/cut).
« So we are interested in the update problem:

= Given a contraction C of a forest F, find another contraction C’ of
a forest F’ that differs from F in one single edge (inserted or
deleted).

= Fast: O(log n) time.

Dynamic Trees

Top Trees

« Proposed by Alstrup et al. [1997,2003]
« Handle unrooted (free) trees with arbitrary degrees.
« Keyideas:
= Associate information with the edges directly.
= Pair edges up:
« compress: combines two edges linked by a degree-two vertex;

« rake: combines leaf with an edge with which it shares an endpoint.
« All pairs (clusters) must be are disjoint.

= expose: determines which two vertices are relevant to the query
(they will not be raked or compressed).

Dynamic Trees

« Consider some free tree.

(level zero: original tree)

Top Trees

Dynamic Trees

« All degree-1 and degree-2 vertices are candidates for a move
(rake or compress).

(level zero: original tree)

Dynamic Trees

Dynamic Trees

14

Renato Werneck

Top Trees

« When two edges are matched, they create new clusters, which
are edge-disjoint.

(level zero: original tree)

Dynamic Trees

Top Trees

 The top tree itself represents the hierarchy of clusters:
= original edge: leaf of the top tree (level zero).
= two edges/clusters are grouped by rake or compress:
* Resulting cluster is their parent in the level above.

= edge/cluster unmatched: parent will have only one child.

» What about values?

Dynamic Trees

Top Trees

« Example (path operations: findmin/addcost)
= Associate two values with each cluster:
» mincost(C): minimum cost in the path represented by C.
« extra(C): cost that must be added to all subpaths of C.
= create(C, e): (called when base cluster C is created)
» mincost(C) = cost of edge e.
- extra(C)=0

= destroy(C): (called when base cluster C is deleted).
« Do nothing.

Dynamic Trees

Top Trees

e Clusters are new edges in the level above:

= New rakes and compresses can be performed as before.

(level one)

Dynamic Trees

Top Trees

« Alstrup et al. see top tree as an API.

« The top tree engine handles structural operations:
= User has limited access to it.

join(A,B,C): called when A and B are paired (by rake or
compress) to create cluster C.

split(A4,B,0): called when a rake or compress is undone (and Cis
split into A and B).

create(C, e): called when base cluster C is created to represent
edgee.

destroy(C): called when base cluster C is deleted.

« Engine calls user-defined functions to handle values properly:

Dynamic Trees

Top Trees

« Example (path operations: findmin/addvalue)
= join(4,B,0): (called when A and B are combined into C)
« compress: mincost(C) = min{mincost(A4), mincost(B)}
« rake: mincost(C) = mincost(B) (assume A is the leaf)
« Both cases: extra(C) = 0
= split(4,B,0): (called when C'is split into A and B)
« compress: for each child X({A,B}:
— mincost(X) = mincost(X) + extra(C)
— extra(X) = extra(X) + extra(C)

« rake: same as above, but only for the edge/cluster that was not
raked.

Dynamic Trees

Dynamic Trees

15

Renato Werneck

Top Trees

« Example (path operations: findmin/addvalue)
= To find the minimum cost in path a-b:
* R =expose(a, b);
- return mincost(R).
= To add a cost x to all edges in path a-b:
* R =expose(a, b);
« mincost(R) = mincost(R) + x;
» extra(R) = extra(R) + x.

Dynamic Trees

Topology Trees

« Proposed by Frederickson [1985, 1997].

» Work on rooted trees of bounded degree.
= Assume each vertex has at most two children.
= Values (and clusters) are associated with vertices.
= Perform a maximal set of independent moves in each round.
= Handle updates in O(log n) worst-case time.

Dynamic Trees

Top Trees

« Can handle operations such as:
= tree costs (just a different way of handling rakes);
= path lengths;

= tree diameters.

« Can handle non-local information using the select operation:
= allows user to perform binary search on top tree.
= an example: tree center.

« Top trees are implemented on top of topology trees, which
they generalize.

Dynamic Trees

RC-Trees

« Proposed by Acar et al. [2003].

« Can be seen as a variant of topology trees.
= Information stored on vertices.

= Trees of bounded degree.

« Main differences:
= Not necessarily rooted.
= Alternate rake and compress rounds.
= Not maximal in compress rounds (randomization).

= Updates in O(log n) expected time.

Dynamic Trees

Contractions

» Topology, Top, and Trace trees:

= contraction-based.

o ST-Trees: path-based.
= But there is a (rough) mapping:
« dashed - rake
— “this is a path that goes nowhere” B3
« solid « compress 6 &
— “both part of a single path”

= ST-Trees can be used to implement topology trees [AHdLTo3].

Chronology

Dynamic Trees

« ST-Trees:
= Sleator and Tarjan (1983): with balanced and biased search trees;
= Sleator and Tarjan (1985): splay trees.
- Topology Trees:
= Frederickson (1985, 1987).
+ ET-trees:
= Hensinger and King (1995);
= Tarjan (1997).
« Top Trees:
= Alstrup, de Lichtenberg, and Thorup (1997);
= Alstrup, Holm, de Lichtenberg, and Thorup (2003).
« RC-Trees:
= Acar, Blelloch, Harper, and Woo (2003).

Dynamic Trees

Dynamic Trees

16

