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Dynamic Trees Dynamic Trees

» Goal: maintain a forest of rooted trees with costs on vertices. « An example (two trees):
= Each tree has a root, every edge directed towards the root.

+ Operations allowed: / H\

= link(v,w): creates an edge between v (a root) and w.

g 3 1% i%
= cut(v,w): deletes edge (v,w). Lo ,f
= findcost(v): returns the cost of vertex v. . EAS
1
= findroot(v): returns the root of the tree containing v. . ({},
= findmin(v): returns the vertex w of minimum cost in the path
from v to the root (if there is a tie, choose the closest to the root).
= addcost(v,x): adds x to the cost of all vertices from v to root.
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Dynamic Trees Obvious Implementation

e Anode represents each vertex;
= findmin(s) = b
= findroot(s) = a
= findcost(s) = 2

« Each node x points to its parent p(x):
= cut, split, findcost: constant time.

= findroot, findmin, addcost: linear time on the size of the path.

« Acceptable if paths are small, but O(n) in the worst case.

« Cleverer data structures achieve O(log n) for all operations.

= addcost(s,3)
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Simple Paths

« We start with a simpler problem:
= Maintain set of paths that can be:
« split: cuts a path in two;
- concatenate: links endpoints of two paths, creating a new path.
= Operations allowed:
« findcost(v): returns the cost of vertex v;
« addcost(v,x): adds x to the cost of vertices in path containing v;
« findmin(v): returns minimum-cost vertex path containing v.

v, v, v, v, vy vg
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Simple Paths as Lists

Dynamic Trees

« Natural representation: doubly linked list.
= Constant time for findcost.

= Constant time for concatenate and split if endpoints given, linear
time otherwise.

= Linear time for findmin and addcost.

« Can we do it O(log n) time?

costs: 6 2 3 4 7 9 3
©
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Simple Paths as Binary Trees

« Alternative representation: balanced binary trees.
= Leaves: vertices in symmetric order.

= Internal nodes: subpaths between extreme descendants.

Simple Paths as Binary Trees

« Compact alternative:
= Each internal node represents both a vertex and a subpath:
« subpath from leftmost to rightmost descendant.

©
vl

Dynamic Trees

Simple Paths: Maintaining Costs

« Keeping costs:
= First idea: store cost(x) directly on each vertex;

= Problem: addcost takes linear time (must update all vertices).

Simple Paths: Maintaining Costs

« Better approach: store Acost(x) instead:
= Root: Acost(x) = cost(x)
= Other nodes: Acost(x) = cost(x) — cost(p(x))

actual costs n Vg difference form n Vg
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Simple Paths: Maintaining Costs

Simple Paths: Finding Minima

¢ Costs:
= addcost: constant time (just add to root)
= Finding cost(x) is slightly harder: O(depth(x)).

difference form n Vg

« Still have to implement findmin:
= Storing mincost(x), the minimum cost in subpath with root x.
« findmin runs in O(log n) time, but addcost is linear.

actual costs n Vg
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Simple Paths: Finding Minima

Simple Paths: Data Fields

« Store Amin(x) = cost(x)-mincost(x) instead.

= findmin still runs in O(log n) time, addcost now constant.

« Final version:

= Stores Amin(x) and Acost(x) for every vertex

actual costs n Vg
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Simple Paths: Structural Changes

Simple Paths: Structural Changes

» Concatenating and splitting paths:
= Join or split the corresponding binary trees;
= Time proportional to tree height.
= For balanced trees, this is O(log n).
« Rotations must be supported in constant time.
» We must be able to update Amin and Acost.

¢ Restructuring primitive: rotation.

() O]
rotate(v)

QO — 0
@ © ® ©

« Fields are updated as follows (for left and right rotations):
= Acost'(v) = Acost(v) + Acost(w)
= Acost'(w) = —Acost(v)
= Acost’(b) = Acost(v) + Acost(b)
= Amin’(w) = max{o, Amin(b) — Acost’(b), Amin(c) — Acost(c)}

= Amin’(v) = max{0, Amin(a) — Acost(a), Amin’(w) — Acost’(w)}
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Splaying

Splaying

« Simpler alternative to balanced binary trees: splaying.

= Guarantee O(log n) access in the amortized sense.

= Makes the data structure much simpler to implement.
 Basic characteristics:

= Does not require any balancing information;

= On an access to v:
« Moves v to the root;

= Based entirely on rotations.

« Other operations (insert, delete, join, split) use splay.

= Does not guarantee that trees are balanced in the worst case.

« Roughly halves the depth of other nodes in the access path.

« Three restructuring operations:
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An Example of Splaying
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An Example of Splaying

An Example of Splaying

Dynamic Trees

zigzag(a)
—_—

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

zig(a)

Dynamic Trees

An Example of Splaying

An Example of Splaying

Dynamic Trees

« End result:

splay(a)
—_—
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Amortized Analysis Amortized Analysis of Splaying
« Bounds the running time of a sequence of operations. « Definitions:
« Potential function ® maps each configuration to real number. * s(x): size of node x (number of descendants, including x);

. . . « At most n, by definition.
» Amortized time to execute each operation:

==L+ P, -0,
- a; amortized time to execute i-th operation;

= r(x): rank of node x, defined as log s(x);
« At most log n, by definition.

= ®; potential of the data structure (twice the sum of all ranks).

« t; actual time to execute the operation; + At most n log n, by definition.

- ®; potential after the i-th operation.
« Access Lemma [ST85]: The amortized time to splay a tree

+ Total time for m operations: with root t at a node x is at most

Ziimti= i (@ O = B) =~ O, + F 6(r(t)-r(x)) + 1 = O(og(s(t)/s(x))).
Dynamic Trees Dynamic Trees
Proof of Access Lemma Proof of Access Lemma: Splaying Step
 Access Lemma [ST85]: The amortized time to splay a tree - Zig-zig: (=) (=)
with root t at a node x is at most O ANBO)
6 ol A 2igzig(x) A D
L)— = t . —
(r(t)-(x)) + 1 = O(log(s(t)/s(x))) Claim: a £ 6 (09 — () AN O
» Proofidea: t+ - ®<6(r(x)-r(x)
= r{(x) = rank of x after the i-th splay step; 2 +2(r( )+’ Y)+1'(2)) — 2(r(x)+r@)+r(2)) < 6 (F(x) - r(x))
= @;= amortized cost of the i-th splay step; 1+rG) + @) + r'(2) - r) - @) - r(z) <3 (r’Fx) -rC))
= a;< 6(rx)-r,_,(x) + 1 (for the zig step, if any) 1470) + 1) - 1) - ) 3 (k) - r(x) Sl,nm re) =)
L. i 1+7(y) +1r(z) - 2r(x) < 3 (F(x) - r(x)) since r(y) 2 r(x)
= ;< 6(rx)-r;_,(x)) (for any zig-zig and zig-zag steps) 14700 + Pz) — 2r() £ 3 (F(0) = 1(9) since r(9) 2 ' (y)
= Total amortized time for all k steps: () — () + (@) - ")) < — 1 rearranging
zi=1..k a< zi=1..k—1 [6(r,G)—ro_,CN] + [6(r(0)-T;_, () + 1] log(s(x)/s(x)) + log(s'(z)/s(x))<—1 definition of rank
TRUE because s(x)+s’(z)<s’(x): both ratios are smaller than 1, at least one
= 6r(x) — 671,(x) + 1 is at most —1/2.
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Proof of Access Lemma: Splaying Step Proof of Access Lemma: Splaying Step
o Zig-zag: (2 (2 o Zig: () 2ige) (=
O NI I O RO (LA — A )
A X ANV AN AN
Claim: a < 4 (r'(x) — r(x)) A A Claim: a <1+ 6 (F(x) — r(9) (only happens if y is root)
t+ O — D <4 (P - () t+ - D <1+ 6 (F(x) - r(x)
2 + (2r'(x)+2r'(y)+2r'(z)) — (2r(x)+2r(y)+2r(z)) < 4 (r'(x) — r(x)) 1+ (2r°(x)+2r'(y)) - (2rx)+2r@y)) <1+ 6 (F(x) — r(x))
2 +2r'(y) + 2r'(z) — 2r(x) — 2r(y) < 4 (¥(x) — r(x)), since r'(x) =r(z) 1+2(0) - r(x) <1+ 6 (F(x) - r(x), since r(y) = r'y)
2 +2r'(y) + 2r'(z) — 4r(x) < 4 (F(x) - r(x)), since r(y) = r(x) TRUE because (x) = r(x).
@) -re) + (@@ -rE)<-1, rearranging
log(s’()/s’(x)) + log(s’(2)/s’(x)) < —1 definition of rank
TRUE because s’(y)+s’(z)<s’(x): both ratios are smaller than 1, at least one
is at most —1/2.
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Splaying

¢ Tosum up:
= No rotation: a =1
= Zigira<6(P(x)-r(x) +1
= Zig-7ig: a <6 ((x) — r(x))
= Zig-zag:a<4 (F(x) - rx))
= Total amortized time at most 6 (r(t) — r(x)) + 1 = O(log n)

« Since accesses bring the relevant element to the root, other
operations (insert, delete, join, split) become trivial.

Dynamic Trees

Dynamic Trees

« We know how to deal with isolated paths.

« How to deal with paths within a tree?

Dynamic Trees

Dynamic Trees

» Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

e Main idea: partition the vertices in a tree into disjoint solid
paths connected by dashed edges.

Dynamic Trees

Dynamic Trees

« Avertex vis exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

Dynamic Trees

Dynamic Trees

« Avertex v is exposed if:
= There is a solid path from v to the root;

= No solid edge enters v.

« Itisunique.

Dynamic Trees
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Dynamic Trees

« Solid paths:
= Represented as binary trees (as seen before).
= Parent pointer of root is the outgoing dashed edge.
= Hierarchy of solid binary trees linked by dashed edges: “virtual
tree”.
« “Isolated path” operations handle the exposed path.
= The solid path entering the root.
= Dashed pointers go up, so the solid path does not “know” it has
dashed children.
« Ifa different path is needed:

= expose(v): make entire path from v to the root solid.

Virtual Tree: An Example

Dynamic Trees

Dynamic Trees

« Example: expose(v)
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« Example: expose(v)
= Take all edges in the path to the root, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)

= .., make them solid, ...

Dynamic Trees

Dynamic Trees

« Example: expose(v)
= ...make sure there is no other solid edge incident into the path.
« Uses splice operation.

Dynamic Trees
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Exposing a Vertex

« expose(x): makes the path from x to the root solid.
» Implemented in three steps:
1. Splay within each solid tree in the path from x to root.
2. Splice each dashed edge from x to the root.
— splice makes a dashed become the left solid child;
— If there is an original left solid child, it becomes dashed.
3. Splay on x, which will become the root.

Dynamic Trees

Dynamic Trees: Splice

 Additional restructuring primitive: splice.

splice(v)

= Will only occur when w is the root of a tree.
« Updates:
= Acost’(v) = Acost(v) — Acost(z)
= Acost’(u) = Acost(u) + Acost(z)
= Amin’(z) = max{o, Amin(v) — Acost’(v), Amin(x) — Acost(x)}

Dynamic Trees

Exposing a Vertex: Running Time (Proof)

Exposing a Vertex: An Example

« expose(a)

(virtual trees)

Dynamic Trees

Exposing a Vertex: Running Time

« Running time of expose(x):
= proportional to initial depth of x;
= xisrotated all the way to the root;
= we just need to count the number of rotations;
« will actually find amortized number of rotations: O(log n).
= proof uses the Access Lemma.
« s(x), r(x) and potential are defined as before;

« In particular, s(x) is the size of the whole subtree rooted at x.
— Includes both solid and dashed edges.

Dynamic Trees

=  k: number of dashed edges from x to the root ¢.
= Amortized costs of each pass:

1. Splay within each solid tree:

— x;: vertex splayed on the i-th solid tree.

— amortized cost of i-th splay: 6 (r(x;) — r(x)) + 1.

- r(x,,) 2r(x;), so the sum over all steps telescopes;

- Amortized cost first of pass: 6(r'(x,)-(x,)) + k< 6logn + k.
2. Splice dashed edges:

— no rotations, no potential changes: amortized cost is zero.
3. Splay on x:

— amortized cost is at most 6 log n + 1.

— xends up in root, so exactly k rotations happen;

— each rotation costs one credit, but is charged two;

— they pay for the extra k rotations in the first pass.

= Amortized number of rotations = O(log n).

Implementing Dynamic Tree Operations

Dynamic Trees

« findcost(v):
= expose v, return cost(v).
« findroot(v):
= expose v;
= find w, the rightmost vertex in the solid subtree containing v;
= splay at w and return w.
« findmin(v):
= expose v;

= use Acost and Amin to walk down from v to w, the last minimum-
cost node in the solid subtree;

= gsplay at w and return w.

Dynamic Trees
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Implementing Dynamic Tree Operations Extensions and Variants
« addcost(v, x): « Simple extensions:
= expose v; = Associate values with edges:
= add x to Acost(v); « just interpret cost(v) as cost(v,p(v)).

« link(v,w): = other path queries (such as length):
o « change values stored in each node and update operations.
= expose v and w (they are in different trees);

= set p(v)=w (that is, make v a middle child of w).

= free (unrooted) trees.
+ implement evert operation, which changes the root.

* cut(v): « Not-so-simple extension:
" exposev; = subtree-related operations:
= add Acost(v) to Acost(right(v)); « requires that vertices have bounded degree;
= make p(right(v))=null and right(v)=null. « Approach for arbitrary trees: “ternarize” them:

— [Goldberg, Grigoriadis and Tarjan, 1991]

Dynamic Trees Dynamic Trees

Alternative Implementation Other Data Structures

 Total time per operation depends on the data structure used to « Some applications require tree-related information:

represent paths: = minimum vertex in a tree;

= Splay trees: O(log n) amortized [ST85]. = add value to all elements in the tree;
= Balanced search tree: O(log2n) amortized [ST83]. = link and cut as usual.

= Locally biased search tree: O(log n) amortized [ST83].
= Globally biased search trees: O(log n) worst-case [ST83].

o ET-Trees can do that:
= Henzinger and King (1995);

« Biased search trees: = Tarjan (1997).

= Support leaves with different “weights”.

= Some solid leaves are “heavier” because they also represent
subtrees dangling from it from dashed edges.

= Much more complicated than splay trees.

Dynamic Trees Dynamic Trees
ET-Trees ET-Trees
« Each tree represented by its Euler tour. « Consider link(v,w):
= Edge {v,w}: e = Create elements representing arcs (v,w) and (w,v):
a

- appears as arcs (v,w) and (w,v) p

* Vertex v: c = Split and concatenate tours appropriately:
- appears once as a self-loop (v,v): « Original tours:

« used as an “anchor” for new links. n 2 n =

« stores vertex-related information.

= Representation is not circular: tour broken at arbitrary place.

« Final tour:

« The cut operation is similar.

Dynamic Trees Dynamic Trees
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ET-Trees

« Tours as doubly-linked lists:
= Natural representation.
= link/cut: O(1) time.
= addcost/findmin: O(n) time.
« Tours as balanced binary search trees:
= link/cut: O(log n) time (binary tree join and split).
= addcost/findmin: O(log n) time:
- values stored in difference form.

Dynamic Trees

Contractions

« Assume we are interested in the path from a to b:

solution?

= Using only local information, how can we get closer to the

Dynamic Trees

Contractions

o ST-Trees [ST83, ST85]:

= Itis clearly path-oriented:
« relevant paths explicitly exposed and dealt with.
« Other approaches are based on contractions:

= Original tree is progressively contracted until a structure
representing only the relevant path (or tree) is left.

= first data structure to handle paths within trees efficiently.

Dynamic Trees

Contractions

« Consider any vertex v with degree 2 in the tree

« Possibilities if v is neither a nor b:
= aand b on same “side”: v is not in a-b.

= If a and b on different sides: v belongs to path ab.

Dynamic Trees

Contractions

« Consider any vertex v with degree 2 in the tree

« Possibilities if v is neither a nor b:
= g and b on same “side”: v is not in ab.

= If a and b on different sides: v belongs to path a-b.

= This is a compress operation.

Contractions

« We can replace (u,v) and (v,w) with a new edge (u,w):

Dynamic Trees

« Consider any vertex v with degree 1in the tree:

= If v is neither a nor b, it is clearly not in a-b.

Dynamic Trees

Dynamic Trees
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Contractions

Contractions

« Consider any vertex v with degree 1in the tree:

= If v is neither a nor b, it is clearly not in ab.

« This is a rake operation.

= We can simply eliminate (v,w), reducing the problem size.

Dynamic Trees

« A contraction-based algorithm:
= Work in rounds;
= In each round, perform some rakes and/or compresses:
« this will create a new, smaller tree;
« moves within a round are usually “independent”.

= Eventually, we will be down to a single element (vertex/edge)
that represents a path (or the tree).

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Path Queries

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

7
Dynamic Trees
Path Queries
» Computing the minimum cost from a to b:
7
Dynamic Trees

« Computing the minimum cost from a to b:

N

Dynamic Trees

Dynamic Trees
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Path Queries

» Computing the minimum cost from a to b:

Path Queries

Dynamic Trees

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Path Queries

Dynamic Trees

« Computing the minimum cost from a to b:

Dynamic Trees

Path Queries

» Computing the minimum cost from a to b:

Contractions

Dynamic Trees

« Suppose a definition of independence guarantees that a
fraction 1/k of all possible rakes and compresses will be
executed in a round.

= All degree-1 vertices are rake candidates.

= All degree-2 vertices are compress candidates.

= Fact: at least half the vertices in any tree have degree 1 or 2.

» Result: a fraction 1/2k of all vertices will be removed.

= Total number of rounds is |—log(2k) /(2k_1)n-| = O(log n).

Dynamic Trees

Dynamic Trees
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Contractions

« rake and compress proposed by Miller and Reif [1985].
= Original context: parallel algorithms.

= Perform several operations on trees in O(log n) time.

Dynamic Trees

Our Problem

« Several data structures deal with this problem.
= [Frederickson, 85 and 97]: Topology Trees;
= [Alstrup et al., 97 and 03]: Top Trees;
= [Acar et al. 03]: RC-Trees.

Dynamic Trees

Top Trees

The Update Problem

« Coming up with a definition of independence that results in a
contraction with O(log n) levels.

= But that is not the problem we need to solve.
« Essentially, we want to repair an existing contraction after a
tree operation (link/cut).
« So we are interested in the update problem:

= Given a contraction C of a forest F, find another contraction C’ of
a forest F’ that differs from F in one single edge (inserted or
deleted).

= Fast: O(log n) time.

Dynamic Trees

Top Trees

« Proposed by Alstrup et al. [1997,2003]
« Handle unrooted (free) trees with arbitrary degrees.
« Keyideas:
= Associate information with the edges directly.
= Pair edges up:
« compress: combines two edges linked by a degree-two vertex;

« rake: combines leaf with an edge with which it shares an endpoint.
« All pairs (clusters) must be are disjoint.

= expose: determines which two vertices are relevant to the query
(they will not be raked or compressed).

Dynamic Trees

« Consider some free tree.

(level zero: original tree)

Top Trees

Dynamic Trees

« All degree-1 and degree-2 vertices are candidates for a move
(rake or compress).

(level zero: original tree)

Dynamic Trees

Dynamic Trees
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Top Trees

« When two edges are matched, they create new clusters, which
are edge-disjoint.

(level zero: original tree)

Dynamic Trees

Top Trees

 The top tree itself represents the hierarchy of clusters:
= original edge: leaf of the top tree (level zero).
= two edges/clusters are grouped by rake or compress:
* Resulting cluster is their parent in the level above.

= edge/cluster unmatched: parent will have only one child.

» What about values?

Dynamic Trees

Top Trees

« Example (path operations: findmin/addcost)
= Associate two values with each cluster:
» mincost(C): minimum cost in the path represented by C.
« extra(C): cost that must be added to all subpaths of C.
= create(C, e): (called when base cluster C is created)
» mincost(C) = cost of edge e.
- extra(C)=0

= destroy(C): (called when base cluster C is deleted).
« Do nothing.

Dynamic Trees

Top Trees

e Clusters are new edges in the level above:

= New rakes and compresses can be performed as before.

(level one)

Dynamic Trees

Top Trees

« Alstrup et al. see top tree as an API.

« The top tree engine handles structural operations:
= User has limited access to it.

join(A,B,C): called when A and B are paired (by rake or
compress) to create cluster C.

split(A4,B,0): called when a rake or compress is undone (and Cis
split into A and B).

create(C, e): called when base cluster C is created to represent
edgee.

destroy(C): called when base cluster C is deleted.

« Engine calls user-defined functions to handle values properly:

Dynamic Trees

Top Trees

« Example (path operations: findmin/addvalue)
= join(4,B,0): (called when A and B are combined into C)
« compress: mincost(C) = min{mincost(A4), mincost(B)}
« rake: mincost(C) = mincost(B) (assume A is the leaf)
« Both cases: extra(C) = 0
= split(4,B,0): (called when C'is split into A and B)
« compress: for each child X({A,B}:
— mincost(X) = mincost(X) + extra(C)
— extra(X) = extra(X) + extra(C)

« rake: same as above, but only for the edge/cluster that was not
raked.

Dynamic Trees

Dynamic Trees
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Top Trees

« Example (path operations: findmin/addvalue)
= To find the minimum cost in path a-b:
* R =expose(a, b);
- return mincost(R).
= To add a cost x to all edges in path a-b:
* R =expose(a, b);
« mincost(R) = mincost(R) + x;
» extra(R) = extra(R) + x.

Dynamic Trees

Topology Trees

« Proposed by Frederickson [1985, 1997].

» Work on rooted trees of bounded degree.
= Assume each vertex has at most two children.
= Values (and clusters) are associated with vertices.
= Perform a maximal set of independent moves in each round.
= Handle updates in O(log n) worst-case time.

Dynamic Trees

Top Trees

« Can handle operations such as:
= tree costs (just a different way of handling rakes);
= path lengths;

= tree diameters.

« Can handle non-local information using the select operation:
= allows user to perform binary search on top tree.
= an example: tree center.

« Top trees are implemented on top of topology trees, which
they generalize.

Dynamic Trees

RC-Trees

« Proposed by Acar et al. [2003].

« Can be seen as a variant of topology trees.
= Information stored on vertices.

= Trees of bounded degree.

« Main differences:
= Not necessarily rooted.
= Alternate rake and compress rounds.
= Not maximal in compress rounds (randomization).

= Updates in O(log n) expected time.

Dynamic Trees

Contractions

» Topology, Top, and Trace trees:

= contraction-based.

o ST-Trees: path-based.
= But there is a (rough) mapping:
« dashed - rake
— “this is a path that goes nowhere” B3
« solid « compress 6 &
— “both part of a single path”

= ST-Trees can be used to implement topology trees [AHdLTo3].

Chronology

Dynamic Trees

« ST-Trees:
= Sleator and Tarjan (1983): with balanced and biased search trees;
= Sleator and Tarjan (1985): splay trees.
- Topology Trees:
= Frederickson (1985, 1987).
+ ET-trees:
= Hensinger and King (1995);
= Tarjan (1997).
« Top Trees:
= Alstrup, de Lichtenberg, and Thorup (1997);
= Alstrup, Holm, de Lichtenberg, and Thorup (2003).
« RC-Trees:
= Acar, Blelloch, Harper, and Woo (2003).

Dynamic Trees

Dynamic Trees
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